Predicting Software Abnormal State by using Classification Algorithm

Author:

Yan Yongquan1,Guo Ping2

Affiliation:

1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

2. School of System Science, Beijing Normal University, Beijing, China

Abstract

Software aging, also called smooth degradation or chronics, has been observed in a long running software application, accompanied by performance degradation, hang/crash failures or both. The key for software aging problem is how to fast and accurately detect software aging occurrence, which is a hard work due to the long delay before aging appearance. In this paper, two problems about software aging prediction are solved, which are how to accurately find proper running software system variables to represent system state and how to predict software aging state in a running software system with a minor error rate. Firstly, the authors use proposed stepwise forward selection algorithm and stepwise backward selection algorithm to find a proper subset of variables set. Secondly, a classification algorithm is used to model software aging process. Lastly, t-test with k-fold cross validation is used to compare performance of two classification algorithms. In the experiments, the authors find that their proposed method is an efficient way to forecast software aging problems in advance.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3