Nano-Catalysis Process for Treatment of Industrial Wastewater

Author:

Karnena Manoj Kumar1ORCID,Konni Madhavi2ORCID,Saritha Vara1ORCID

Affiliation:

1. Department of Environmental Science, GITAM Institute of Science, GITAM University (Deemed), India

2. Department of Basic Science and Humanities, Vignan's Institute of Engineering for Women, India

Abstract

The rapid increase in population and urbanization leads to the scarcity of water resources in the present era. Therefore, effective wastewater treatment is a prerequisite for a growing economy. Development and implementing the advanced treatment technologies of wastewater with high efficiency and low capital is difficult. In the recent advancements among various treatment processes, nanomaterial science has been attracting the attention of researchers. However, limited collective knowledge is available in this context. The chapter reviews the potential of nano catalysis's process, mechanism, and current drawbacks in treatment technologies. It explains the different nano catalysts that are widely utilized for the treatment and removal of organic and inorganic pollutants in water and wastewater and discusses the nano-based photocatalytic, nano-based electrocatalysis, nano-based Fenton catalysis and their efficiency in various removal of pollutants from wastewater.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable Approaches for the Treatment of Industrial Wastewater Using Metal-Organic Frame Works;Advanced Sciences and Technologies for Security Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3