Affiliation:
1. Harbin Institute of Technology at Weihai, China
2. Xi'an Microelectronic Technology Institute, China
Abstract
The immiscible two-phase flow behaves nonlinearly, and it is a challenging task to control and stabilize the liquid-liquid interface. Parallel flow forms under a proper balance between the driving force, the friction resistance, and the interfacial tension. The liquid-solid interaction as well as the liquid-liquid interaction plays an important role in manipulating the liquid-liquid interface. With vacuum-driven flow, long and stable parallel flow is possible to be obtained in oil-water systems and can be used for fabricating micro- and nanomaterials. Ultra-small Cu nanoparticles of 4~10 nm were synthesized continuously through chemical reactions taking place on the interface. This makes it possible for in situ synthesis of conductive nanoink avoiding oxidation. Well-controlled interface reactions can also be used to produce ultra-long sub-micro Cu wires up to 10 mm at room temperature. This method provided new and simple additive fabrication methods for making integrated microfluidic devices.