Adaptive Prediction Methods for Medical Image/Video compression for Telemedicine Application

Author:

Pathak Ketki C.1,Sarvaiya Jignesh N.2,Darji Anand D.2

Affiliation:

1. Sarvajanik College of Engineering and Technology, India

2. Sardar Vallabhbhai National Institute of Technology Suart, India

Abstract

Due to rapid development of multimedia communication and advancement of image acquisition process, there is a crucial requirement of high storage and compression techniques to mitigate high data rate with limited bandwidth scenario for telemedicine application. Lossless compression is one of the challenging tasks in applications like medical, space, and aerial imaging field. Apart from achieving high compression ratio, in these mentioned applications there is a need to maintain the original imaging quality along with fast and adequate processing. Predictive coding was introduced to remove spatial redundancy. The accuracy of predictive coding is based on the choice of effective and adaptive predictor which is responsible for removing spatial redundancy. Medical images like computed tomography (CT) and magnetic resonance imaging (MRI) consume huge storage and utilize maximum available bandwidth. To overcome these inherent challenges, the authors have reviewed various adaptive predictors and it has been compared with existing JPEG and JPEG LS-based linear prediction technique for medical images.

Publisher

IGI Global

Reference22 articles.

1. Huffman Image Compression Incorporating DPCM and DWT

2. Median Edge Detector for Lossless Video Coding

3. Lossless predictive compression of medical images

4. Feed-Forward Neural Network-Based Predictive Image Coding for Medical Image Compression.;M. U. A.Ayoobkhan;Arabian Journal for Science and Engineering,2017

5. Efficient lossless image compression using modified hierarchical prediction and context adaptive coding.;P. S.Babu;Indian Journal of Science and Technology,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3