Performance Analysis of Compression Techniques for Chronic Wound Image Transmission Under Smartphone-Enabled Tele-Wound Network

Author:

Chakraborty Chinmay1

Affiliation:

1. Dept. of Electronics & Communication Engineering, Birla Institute of Technology, Jharkhand, India

Abstract

The healing status of chronic wounds is important for monitoring the condition of the wounds. This article designs and discusses the implementation of smartphone-enabled compression technique under a tele-wound network (TWN) system. Nowadays, there is a huge demand for memory and bandwidth savings for clinical data processing. Wound images are captured using a smartphone through a metadata application page. Then, they are compressed and sent to the telemedical hub with a set partitioning in hierarchical tree (SPIHT) compression algorithm. The transmitted image can then be reduced, followed by an improvement in the segmentation accuracy and sensitivity. Better wound healing treatment depends on segmentation and classification accuracy. The proposed framework is evaluated in terms of rates (bits per pixel), compression ratio, peak signal to noise ratio, transmission time, mean square error and diagnostic quality under telemedicine framework. A SPIHT compression technique assisted YDbDr-Fuzzy c-means clustering considerably reduces the execution time (105s), is simple to implement, saves memory (18 KB), improves segmentation accuracy (98.39%), and yields better results than the same without using SPIHT. The results favor the possibility of developing a practical smartphone-enabled telemedicine system and show the potential for being implemented in the field of clinical evaluation and the management of chronic wounds in the future.

Publisher

IGI Global

Reference36 articles.

1. A survey on wireless multimedia sensor networks

2. Performance evolutionary in AWGN channel for 802.11a high-speed network. Int.;I.Amarjeet;Journal of Advanced Research in Computer Science and Software Engineering,2012

3. Recent trends in image compression and its application in telemedicine and teleconsultation;M.Ansari;32nd National Systems Conference,2008

4. The global burden of diabetic foot disease

5. A Review on Telemedicine-Based WBAN Framework for Patient Monitoring

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3