Affiliation:
1. Madan Mohan Malaviya University of Technology, India
Abstract
This chapter presents an overview of spam email as a serious problem in our internet world and creates a spam filter that reduces the previous weaknesses and provides better identification accuracy with less complexity. Since J48 decision tree is a widely used classification technique due to its simple structure, higher classification accuracy, and lower time complexity, it is used as a spam mail classifier here. Now, with lower complexity, it becomes difficult to get higher accuracy in the case of large number of records. In order to overcome this problem, particle swarm optimization is used here to optimize the spam base dataset, thus optimizing the decision tree model as well as reducing the time complexity. Once the records have been standardized, the decision tree is again used to check the accuracy of the classification. The chapter presents a study on various spam-related issues, various filters used, related work, and potential spam-filtering scope.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献