Performance Enhancement of Outlier Removal Using Extreme Value Analysis-Based Mahalonobis Distance

Author:

A Joy Christy1ORCID,A Umamakeswari1

Affiliation:

1. School of Computing, SASTRA University (Deemed), India

Abstract

Outlier detection is a part of data analytics that helps users to find discrepancies in working machines by applying outlier detection algorithm on the captured data for every fixed interval. An outlier is a data point that exhibits different properties from other points due to some external or internal forces. These outliers can be detected by clustering the data points. To detect outliers, optimal clustering of data points is important. The problem that arises quite frequently in statistics is identification of groups or clusters of data within a population or sample. The most widely used procedure to identify clusters in a set of observations is k-means using Euclidean distance. Euclidean distance is not so efficient for finding anomaly in multivariate space. This chapter uses k-means algorithm with Mahalanobis distance metric to capture the variance structure of the clusters followed by the application of extreme value analysis (EVA) algorithm to detect the outliers for detecting rare items, events, or observations that raise suspicions from the majority of the data.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3