Fuzzy Rule-Based Layered Classifier and Entropy-Based Feature Selection for Intrusion Detection System

Author:

Sellappan Devaraju1ORCID,Srinivasan Ramakrishnan2ORCID

Affiliation:

1. Sri Krishna Arts and Science College, India

2. Dr. Mahalingam College of Engineering and Technology, India

Abstract

Intrusion detection systems must detect the vulnerability consistently in a network and also perform efficiently with the huge amount of traffic. Intrusion detection systems must be capable of detecting emerging and proactive threats in the networks. Various classifiers are used to classify the threats as normal or intrusive by supervising the system activity. In this chapter, layered fuzzy rule-based classifier is proposed to detect the various intrusions, and fuzzy entropy-based feature selection is proposed to identify the relevant features. Layered fuzzy rule-based classifier is proposed to improve the performance of the intrusion detection system. KDD dataset contains various attacks; these attacks are grouped into four classes, namely Denial-of-Service (DoS), Probe, Remote-to-Local (R2L), and User-to-Root (U2R). Real-time dataset is also considered in this research. Experimental result shows that the proposed method provides good detection rate, minimizes the false positive rate, and less computational time.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3