Prevention of Soil Erosion and Torrential Floods

Author:

Dwarapureddi Bhavya Kavitha1,Dash Swathi1,Raj Aman1,Garika Nihanth Soury1,Kumar Ankit1,Vara Saritha1ORCID

Affiliation:

1. GITAM University (Deemed), India

Abstract

Climatic conditions, precise relief features, variations of soil, flora cover, socio-economic conditions together lead to torrential flood waves as a result of current soil erosion processes. Erosion and torrential floods are aggravated due to over exploitation of agricultural and forest land along with urbanization. Effects of soil erosion include nutrient loss, land use changes, reduced productivity, siltation of water bodies, among other effects like affecting livelihood of marginal communities dependent on agriculture globally and public health. Nearly 11 million km2 of soil is impacted by erosion precisely by water. Other factors like intensified agriculture and climate change contribute to and aggravate the erosion rate. Contemporary torrential floods are characterized by their increased destruction and frequency unlike the pre-development periods when their occurrence was rare. The focus of this review is to compile and aid as a data base for understanding methods of preventing erosion of soil and torrential floods as put forth by various researchers.

Publisher

IGI Global

Reference116 articles.

1. Ahmad, I., Verma, V., & Verma, M. K. (2015). Application of curve number method for estimation of runoff potential in GIS environment. 2nd International Conference on Geological and Civil Engineering, 80(4), 16-20.

2. A systematic review of soil erosion control practices on the agricultural land in Asia

3. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy

4. Estimation of soil erosion in northern Kirkuk governorate, Iraq using rusle, remote sensing and gis.;A. M. A.Al-Abadi;Carpathian Journal of Earth and Environmental Sciences,2016

5. Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Soil Degradation, Resilience, Restoration, and Sustainable Use;Agroecological Approaches for Sustainable Soil Management;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3