Deep Learning Techniques for Prediction, Detection, and Segmentation of Brain Tumors

Author:

Jayanthi Prisilla1ORCID,Iyyanki Muralikrishna2

Affiliation:

1. K. G. Reddy College of Engineering and Technology, India

2. Defence Research and Development Organisation, India

Abstract

In deep learning, the main techniques of neural networks, namely artificial neural network, convolutional neural network, recurrent neural network, and deep neural networks, are found to be very effective for medical data analyses. In this chapter, application of the techniques, viz., ANN, CNN, DNN, for detection of tumors in numerical and image data of brain tumor is presented. First, the case of ANN application is discussed for the prediction of the brain tumor for which the disease symptoms data in numerical form is the input. ANN modelling was implemented for classification of human ethnicity. Next the detection of the tumors from images is discussed for which CNN and DNN techniques are implemented. Other techniques discussed in this study are HSV color space, watershed segmentation and morphological operation, fuzzy entropy level set, which are used for segmenting tumor in brain tumor images. The FCN-8 and FCN-16 models are used to produce a semantic segmentation on the various images. In general terms, the techniques of deep learning detected the tumors by training image dataset.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain tumor detection using deep learning from magnetic resonance images;Applications of Artificial Intelligence in Healthcare and Biomedicine;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3