Artificial Intelligence in Stochastic Multiple-Criteria Decision Making

Author:

Sawicka Hanna1

Affiliation:

1. Poznan University of Technology, Poland

Abstract

This chapter presents the concept of stochastic multiple criteria decision making (MCDM) method to solve complex ranking decision problems. This approach is composed of three main areas of research, i.e. classical MCDM, probability theory and classification method. The most important steps of the idea are characterized and specific features of the applied methods are briefly presented. The application of Electre III combined with probability theory, and Promethee II combined with Bayes classifier are described in details. Two case studies of stochastic multiple criteria decision making are presented. The first one shows the distribution system of electrotechnical products, composed of 24 distribution centers (DC), while the core business of the second one is the production and warehousing of pharmaceutical products. Based on the application of presented stochastic MCDM method, different ways of improvements of these complex systems are proposed and the final i.e. the best paths of changes are recommended.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3