Knowledge-Based Support to the Treatment of Exceptions in Computer Interpretable Clinical Guidelines

Author:

Bottrighi Alessio1,Leonardi Giorgio1,Piovesan Luca2,Terenziani Paolo1

Affiliation:

1. University of Piemonte Orientale, Italy

2. Università degli Studi di Torino, Italy

Abstract

Clinical guidelines are one of the major tools that have been introduced to increase the rationalization of healthcare processes, granting both the quality and the standardization of healthcare services, and the minimization of costs. Computer interpretable clinical guidelines (CIGs) are widely adopted in order to assist practitioners in decision making, providing them evidence-based recommendations based on the best available medical knowledge. However, a main problem in CIG adoption is the fact that, in the medical context, some degree of uncertainty is often present. Thus, during guidelines executions on specific patients, unpredictable facts and conditions (henceforth called exceptions) may occur. A proper and immediate treatment of such exceptions is mandatory, but most of the current software systems coping with CIGs do not support it. In this paper, the authors describe how the GLARE system has been extended to deal with this purpose. They identify different types of exceptions, considering their “pre-locability” and “pre-plannability”. On the basis of such parameters, the authors propose different treatment modalities, consisting of both data structures to model the different types of exceptions, and the algorithms to treat them. The resulting methodology is an innovative one, integrating different Artificial Intelligence techniques (ranging from planning to ontology-based reasoning). Finally, they also discuss how they implemented their system-independent methodology on top of GLARE, and describe its application in the ROPHS project, considering the management of the severe trauma guideline.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3