Modelling Propagation of Public Opinions on Microblogging Big Data Using Sentiment Analysis and Compartmental Models

Author:

Fang Youjia1,Chen Xin1,Song Zheng1,Wang Tianzi1,Cao Yang1

Affiliation:

1. Virginia Tech, USA

Abstract

Compartmental models have been used to model information diffusion on social media. However, there have been few studies on modelling positive and negative public opinions using compartmental models. This study aimed for using sentiment analysis and compartmental model to model the propagation of positive and negative opinions on microblogging big media. The authors studied the news propagation of seven popular social topics on China's Sina Weibo microblogging platform. Natural language processing and sentiment analysis were used to identify public opinions from microblogging big data. Then two existing (SIZ and SEIZ) models and a newly developed (SE2IZ) model were implemented to model the news propagation and evaluate the trends of public opinions on selected social topics. Simulation study was used to check model fitting performance. The results show that the new SE2IZ model has a better model fitting performance than existing models. This study sheds some new light on using social media for public opinion estimation and prediction.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3