Abstract
Compartmental models have been used to model information diffusion on social media. However, there have been few studies on modelling positive and negative public opinions using compartmental models. This study aimed for using sentiment analysis and compartmental model to model the propagation of positive and negative opinions on microblogging big media. The authors studied the news propagation of seven popular social topics on China's Sina Weibo microblogging platform. Natural language processing and sentiment analysis were used to identify public opinions from microblogging big data. Then two existing (SIZ and SEIZ) models and a newly developed (SE2IZ) model were implemented to model the news propagation and evaluate the trends of public opinions on selected social topics. Simulation study was used to check model fitting performance. The results show that the new SE2IZ model has a better model fitting performance than existing models. This study sheds some new light on using social media for public opinion estimation and prediction.
Reference37 articles.
1. A validation of low mileage bias using Naturalistic Driving Study data.;J.Antin;Accident; Analysis and Prevention,2016
2. Bettencourt, L. M., Cintrón-Arias, A., Kaiser, D. I., & Castillo-Chávez, C. (2006). The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models. Physica A: Statistical Mechanics and its Applications, 364, 513-536.
3. Dynamic itemset counting and implication rules for market basket data
4. Discovering and Characterizing Places of Interest Using Flickr and Twitter
5. Measuring user influence in twitter: The million follower fallacy.;M.Cha;ICWSM,2010