Language Classification and Recognition From Audio Using Deep Belief Network

Author:

Selvaraj Santhi1ORCID,J. Raja Sekar1,S. Amutha1

Affiliation:

1. Mepco Schlenk Engineering College, India

Abstract

The main objective is to recognize the chat from social media as spoken language by using deep belief network (DBN). Currently, language classification is one of the main applications of natural language processing, artificial intelligence, and deep learning. Language classification is the process of ascertaining the information being presented in which natural language and recognizing a language from the audio sound. Presently, most language recognition systems are based on hidden Markov models and Gaussian mixture models that support both acoustic and sequential modeling. This chapter presents a DBN-based recognition system in three different languages, namely English, Hindi, and Tamil. The evaluation of languages is performed on the self built recorded database, which extracts the mel-frequency cepstral coefficients features from the speeches. These features are fed into the DBN with a back propagation learning algorithm for the recognition process. Accuracy of the recognition is efficient for the chosen languages and the system performance is assessed on three different languages.

Publisher

IGI Global

Reference22 articles.

1. Deep Belief Networks Using Discriminative Features for Phone Recognition.;M.Abdel-rahman;Proc. ICASSP 2011,2011

2. Speech Recognition Using Deep Neural Networks: A Systematic Review

3. A Model-Selection-based Self Splitting Gaussian Mixture Learning with Application to Speaker Identification.;S.-S.Cheng;EURASIP Journal on Applied Signal Processing,2004

4. Phone Recognition with the mean-covariance restricted Boltzmann machine.;G. E.Dahl;Advances in Neural Information Processing Systems,2010

5. A Fast Learning Algorithm for Deep Belief Nets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3