Performance of Adsorptive Heat Storage Devices for Heat Supply

Author:

Abstract

The chapter is focused on modelling of performance of adsorptive heat storage devices and estimation of performance of heat storage devices. Two groups of models of adsorptive heat storage units suggested previous researchers are analyzed. The first one is focused on predicting the heat energy storage density, it being based on Dubinin-Polanyi theory. The second one is devoted to analyzing the kinetic of adsorption processes and performance of the adsorber or adsorptive-desorptive reactor filled with traditional adsorbent or salt which forms crystalline hydrates. The key drawback of both groups of models concerns with considering only one stage of exploitation of adsorptive heat storage device in spite of its operating in two-stage mode, that is, alternating discharge (adsorption) and charge (regeneration). It inhibits estimation of efficiency of adsorptive heat storage device basing on full operating cycle and its involving in heat supply system. Two algorithms for estimation of operating parameters are proposed by authors for closed-type and open-type heat storage devices. The algorithm for calculation of operating parameters of closed type adsorptive heat storage device is proposed: calculation of the mass transfer coefficient, adsorption, useful heat, that is, heat of adsorption, determination of the heat input, it being calculated as heat inputs for heating the adsorbent, device housing, water in the tank, evaporation of water in the tank, heating of the adsorbed water and desorption. Then efficiency factor is calculated. The operating characteristics of a closed-type heat energy storage device were studied when the composite adsorbent ‘silica gel – sodium sulphate' used. The effect of the humid airflow velocity on the efficiency factor is taken into account by introducing a coefficient equal to the value of the adsorption. An increase in the efficiency coefficient was stated when the velocity and relative humidity of the airflow. It is shown that the humid air flow temperature practically does not affect its value. Having been used the suggested algorithm, the optimal operating characteristics of an adsorptive heat storage device of a closed type based on a composite adsorbent ‘silica gel – sodium sulphate' for a private house heating system are revealed to be humid air velocities of 0.6 – 0.8 m/s and relative humidity 40 – 60%. When these operational data applied, the efficiency coefficient is shown to reach the maximum values (about 55%). Algorithm of calculation of operating parameter of open-type heat storage device includes computation of mass transfer coefficient, adsorption, useful heat (heat of adsorption), heat input for heating the adsorbent, device casing, water in the humidifier, evaporation of water, heating the adsorbed water, desorption, and calculating efficiency coefficient. Performance of open-type heat storage device based on the composite adsorbent ‘silica gel – sodium sulphate' is estimated. The optimal operating conditions of the heat accumulating device which allow operating with maximal magnitudes of efficiency coefficients 53 – 57% are stated to be humid airflow speed of 0.6 – 0.8 m/s and relative humidity of 40 – 60%. Correlation between efficiency factors obtained by experiments and calculated with suggested algorithm is confirmed. The possibility of reducing the power consumption when heat storage devices applied in 2,4 – 90 times versus decentralized heating systems on basis of solid fuel boiler, gas boiler and electric boiler is stated when open-type sorptive heat storage device used. Results of the study can be used to develop adsorptive storage devices in decentralized heat supply and ventilation systems and adsorption units for utilization of low-temperature waste heat.

Publisher

IGI Global

Reference41 articles.

1. Effects of Heat-Transfer Coefficients on Thermal Dynamics in a Near-Adiabatic Fixed Bed

2. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds

3. Numerical analysis of adsorptive temperature wave regenerative heat pump

4. Belyanovskaya, E.A., Lytovchenko, R.D., Mikhaylov, A.G., Sukhyy, K.M., & Sukha, I.V. (2019). Algoritm rozrahunku konstruktivnih ta ekspluatacijnih harakteristik adsorbcijnogo akumulyatora teplovoï energiï vidkritogo tipu na osnovi kompozitnih adsorbentiv. Komp'yuternoe modelirovanie i optimizaciya, 1(5), 3 – 9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3