Structure and Properties of Composite Adsorbents Salt Inside Porous Matrix

Author:

Abstract

The chapter is devoted to structure and properties of composite adsorbents ‘salt inside porous matrix'. Characteristics of adsorbents ‘salt inside porous matrix', such as ‘zeolite – crystalline hydrate', ‘vermiculite – crystalline hydrate', ‘silica gel – crystalline hydrate' were analysed. Main advantages of composite adsorbents are shown to be higher adsorptive capacity and lower regeneration temperature as compared with host matrix. Adsorptive capacities of composite materials are shown to be significantly enhanced by introduction of salts in host matrix such as zeolite, vermiculite, or silica gel. Water uptake by composite adsorbent is shown to be increased by rising the salt content in it. The drawback of most of existing impregnation technologies is shown to be impossibility of obtaining composite with salt content more than 40 – 60% along with complexity. Sol gel method is shown to be an alternative for conventional impregnation methods. Properties of adsorbents ‘silica gel – sodium sulphate' synthesized according to sol gel method developed by authors were considered. The composite ‘silica gel – sodium sulphate' composition and structure were studied by IR-spectroscopy and wide-angle x-ray scattering. Adsorptive properties of crystalline Na2SO4 when allocated in silicon oxygen matrix are shown to result from dispersion up to nanoscale. Adsorptive capacities and heat of adsorption of composites ‘silica gel – sodium sulphate' and ‘silica gel – sodium acetate' surpass almost by 30% the value calculated from the linear superposition of the sorption capacities of the sorbent and massive salt. Their adsorption properties are shown to be not a linear combination of properties of silica gel and salt. The formation of a unique structure promoting an increase in the rate of reaction between crystalline hydrates and water vapor in the developed pores of the silicon-oxygen matrix is confirmed. It leads to increasing the heat of adsorption and the heat energy storage density. Strong difference of water sorption kinetic curves of composite ‘silica gel – sodium sulphate' and massive sodium sulphate is revealed. The correlation of their composition, structure, water adsorption kinetic, and operating characteristic as heat storage material is stated.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3