Affiliation:
1. Kyungpook National University, South Korea
2. COMSATS Institue of Information Technology, Pakistan
3. Sungkyul University, South Korea
Abstract
Avoiding from congestion and provision of reliable communication characterising the low energy consumption and high data rate is one of the momentous challenges at Media Access Control (MAC) layer. This become more difficult to achieve when there is energy constraint mixed with mobility of nodes. Same issue is addressed in this underlying paper. Here we have proposed a Time-Sharing Energy Efficient Congestion Control (TSEEC) technique for Mobile Wireless Sensor Networks. Time Division Multiple Access Protocol (TDMA) and Statistical Time Division Multiple Access Protocol (STDMA) are major constituents of this technique. These helps in conserving the energy by controlling the sleeping, waking up and listening states of sensor nodes. Load Based Allocation and Time Allocation Leister techniques further helps in conserving the network energy minimizing the network congestion. First mentioned technique is designed on the basis of STDMA Protocol and uses the sensor node information to dynamically assign the time slots while later said technique is does the job of mobility management of sensor node. This Time Allocation Leister techniques further comprises of Extricated Time Allocation (ETA), Shift Back Time Allocation (SBTA), and eScaped Time Allocation (STA) sub techniques for managing the joing and leaving of nodes to cluster and redundant\absence of data for communication respectively. To control the movement of mobile sensor nodes, we have also introduced mobility pattern as part of TSEEC that helps in making the protocol adaptive to traffic environment and to mobility as well. A comparitive analysis of proposed mechanism with SMAC is performed in NS2 along with mathematical anslysis by considering energy consumption, and packet deliver ratio as performance evaluation parameters. The results for the former outperforms to that of later. Moreover, comparative analysis of the proposed TSEEC with other MAC protocols is also presented.