Diameter-Aggregation Delay Tradeoff for Data Gathering Trees in Wireless Sensor Networks

Author:

Meghanathan Natarajan1

Affiliation:

1. Jackson State University, USA

Abstract

We define the aggregation delay as the minimum number of time slots it takes for the data to be aggregated in a Data Gathering tree (DG tree) spanning all the nodes of the sensor network; the diameter of a DG tree is the maximum distance (number of hops) from a leaf node to the root node of the tree. We assume that intermediate nodes at the same level or different levels of a DG tree could simultaneously aggregate data from their respective child nodes using different CDMA (Code Division Multiple Access) codes; but, an intermediate node has to schedule non-overlapping time slots (one for each of its child nodes) to aggregate data from its own child nodes. We employ an algorithm to determine the minimum aggregation delay at every intermediate node of the Bottleneck Node Weight (BNW) and Bottleneck Link Weight (BLW)-based DG trees. We observe the BNW-DG trees to incur a smaller tree diameter, but a significantly larger aggregation delay; on the other hand, the BLW-DG trees incur a larger tree diameter and a relatively lower aggregation delay, especially with increase in node density.

Publisher

IGI Global

Reference26 articles.

1. Trade-off between energy savings and source-to-sink delay in data dissemination for wireless sensor networks

2. Energy-latency tradeoff for in-network function computation in random networks

3. Energy-Efficient Communication Protocol for Wireless Microsensor Networks.;W.Heinzelman;Proceedings of the 33rd Annual Hawaaian International Conference on Systems Science,2004

4. Nearly Constant Approximation for Data Aggregation Scheduling in Wireless Sensor Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3