An Improved Genetic Algorithm for Document Clustering on the Cloud

Author:

Akter Ruksana1,Chung Yoojin1

Affiliation:

1. Hankuk University of Foreign Studies, Seoul, Korea

Abstract

This article presents a modified genetic algorithm for text document clustering on the cloud. Traditional approaches of genetic algorithms in document clustering represents chromosomes based on cluster centroids, and does not divide cluster centroids during crossover operations. This limits the possibility of the algorithm to introduce different variations to the population, leading it to be trapped in local minima. In this approach, a crossover point may be selected even at a position inside a cluster centroid, which allows modifying some cluster centroids. This also guides the algorithm to get rid of the local minima, and find better solutions than the traditional approaches. Moreover, instead of running only one genetic algorithm as done in the traditional approaches, this article partitions the population and runs a genetic algorithm on each of them. This gives an opportunity to simultaneously run different parts of the algorithm on different virtual machines in cloud environments. Experimental results also demonstrate that the accuracy of the proposed approach is at least 4% higher than the other approaches.

Publisher

IGI Global

Reference24 articles.

1. Applications of Population Based Algorithms for Document Clustering.;J.Agrawal;CSI Communications,2012

2. An Evolutionary Approach for Document Clustering

3. An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization

4. Nonparametric genetic clustering: Comparison of validity indices. IEEE Trans. System Man Cybern.-;S.Bandyopadhyay;Part C Applications and Reviews,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3