Portfolio Optimization and Asset Allocation With Metaheuristics

Author:

Ray Jhuma1,Bhattacharyya Siddhartha1ORCID,Bhupendro Singh N.2

Affiliation:

1. RCC Institute of Information Technology, India

2. National Institute of Technology, India

Abstract

Portfolio optimization stands to be an issue of finding an optimal allocation of wealth to place within the obtainable assets. Markowitz stated the problem to be structured as dual-objective mean-risk optimization, pointing the best trade-off solutions within a portfolio between risks which is measured by variance and mean. Thus the major intention was nothing else than hunting for optimum distribution of wealth over a specific amount of assets by diminishing risk and maximizing returns of a portfolio. Value-at-risk, expected shortfall, and semi-variance measures prove to be complex for measuring risk, for maximization of skewness, liquidity, dividends by added objective functions, cardinality constraints, quantity constraints, minimum transaction lots, class constraints in real-world constraints all of which are incorporated in modern portfolio selection models, furnish numerous optimization challenges. The emerging portfolio optimization issue turns out to be extremely tough to be handled with exact approaches because it exhibits nonlinearities, discontinuities and high-dimensional, efficient boundaries. Because of these attributes, a number of researchers got motivated in researching the usage of metaheuristics, which stand to be effective measures for finding near optimal solutions for tough optimization issues in an adequate computational time frame. This review report serves as a short note on portfolio optimization field with the usage of Metaheuristics and finally states that how multi-objective metaheuristics prove to be efficient in dealing with portfolio selection problems with complex measures of risk defining non-convex, non-differential objective functions.

Publisher

IGI Global

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3