Performance Analysis of Nature-Inspired Algorithms-Based Bayesian Prediction Models for Medical Data Sets

Author:

Kumar Amit1,Sarkar Bikash Kanti1

Affiliation:

1. Birla Institute of Technology Mesra, India

Abstract

Research in medical data prediction has become an important classification problem due to its domain specificity, voluminous, and class imbalanced nature. In this chapter, four well-known nature-inspired algorithms, namely genetic algorithms (GA), genetic programming (GP), particle swarm optimization (PSO), and ant colony optimization (ACO), are used for feature selection in order to enhance the classification performances of medical data using Bayesian classifier. Naïve Bayes is most widely used Bayesian classifier in automatic medical diagnostic tools. In total, 12 real-world medical domain data sets are selected from the University of California, Irvine (UCI repository) for conducting the experiment. The experimental results demonstrate that nature-inspired Bayesian model plays an effective role in undertaking medical data prediction.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3