Activity Recognition System Through Deep Learning Analysis as an Early Biomarker of ASD Characteristics

Author:

S. P. Abirami1,G. Kousalya1,P. Balakrishnan2

Affiliation:

1. Coimbatore Institute of Technology, India

2. VIT University, India

Abstract

Autism spectrum disorder (ASD) is a very high-flying area of research in the current era owing to its limited and on-going exploration. This chapter aims to bridge the gap of such late realization of autistic feature through machine intervention commonly known as computer vision. In this chapter, basic summarization of important characteristic features of autism and how those features could be measured and altered before a human could recognize are proposed. The chapter proposes a model for activity identification of the autistic child through video recordings. The approach is modelled in a way that consists of two phases: 1) Optical flow method detects the unusual frames based on motion pattern. 2) Each of these detected frames are fed to convolution neural network, which is trained to extract features and exactly classify if the particular frame under consideration belongs to usual or unusual class. This examines the various activities, time delay, and factors influencing the motion of the autistic child under constrained scenarios proving maximum accuracy and performance.

Publisher

IGI Global

Reference35 articles.

1. Identification and exploration of facial expression in children with ASD in a contact less environment;S. P.Abirami;Journal of Intelligent & Fuzzy Systems,2018

2. Blind Ratings of Early Symptoms of Autism Based upon Family Home Movies

3. A Comparative Study of Infantile Autism and Specific Developmental Receptive Language Disorder

4. Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi‐instrument fusion

5. Applying machine learning to facilitate autism diagnostics: Pitfalls and promises.;D.Bone;Journal of Autism and Developmental Disorders,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3