Affiliation:
1. Auckland University of Technology, New Zealand
Abstract
Gait recognition mainly uses different postures of each individual to perform identity authentication. In the existing methods, the full-cycle gait images are used for feature extraction, but there are problems such as occlusion and frame loss in the actual scene. It is not easy to obtain a full-cycle gait image. Therefore, how to construct a highly efficient gait recognition algorithm framework based on a small number of gait images to improve the efficiency and accuracy of recognition has become the focus of gait recognition research. In this chapter, deep neural network CRBM+FC is created. Based on the characteristics of Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) fusion, a method of learning gait recognition from GEI to output is proposed. A brand-new gait recognition algorithm based on layered fu-sion of LBP and HOG is proposed. This chapter also proposes a feature learning network, which uses an unsupervised convolutionally constrained Boltzmann machine to train the Gait Energy Images (GEI).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning Platforms;Texts in Computer Science;2023
2. Introduction;Texts in Computer Science;2023
3. New Recommendation System Based on Students' Engagement Prediction Using CNN to Optimize E-Learning;International Journal of Organizational and Collective Intelligence;2022-10-21
4. Identity Authentication Technology in Edge Computing Environment: Vision and Challenges;Advances in Artificial Intelligence and Security;2021
5. Introduction;Texts in Computer Science;2020-12-05