3D Printing Build Farms

Author:

Loy Jennifer1ORCID,Novak James I.1ORCID

Affiliation:

1. Deakin University, Australia

Abstract

The development of high-end, distributed, advanced manufacturing over the last decade has been a by-product of a push to foster new workforce capabilities, while building a market for industrial additive manufacturing (3D printing) machines. This trend has been complemented by a growing democratization in access to commercial platforms via the internet, and the ease of communication it allows between consumers and producers. New ways of distributed working in manufacturing are on the rise while mass production facilities in the Western world are in decline. As automation increasingly excludes the worker from assembly line production, the tools to regain control over manufacturing and commercial interaction are becoming more readily available. As a result, new working practices are emerging. This chapter discusses networked 3D printing build farms and their potential to reshape the future of work for distributed manufacturing. It highlights changes in infrastructure priorities and education for a digitally enabled maker society from an Australian perspective.

Publisher

IGI Global

Reference54 articles.

1. Australian Government, Department of Infrastructure, Transport, Regional Development and Communication. (2019). Smart Cities Collaboration Platform. Retrieved from https://www.infrastructure.gov.au/cities/smart-cities/collaboration-platform/

2. The cost of additive manufacturing: machine productivity, economies of scale and technology-push

3. Rolling out the future: The current status of the Australian NBN and its impact for property.;L.Cradduck;Proceedings of the 22nd Pacific Rim Real Estate Society (PRRES) Annual Conference.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Society as a Fundamental Input to Defence Capability;Contemporary Issues in Air and Space Power;2024

2. Theoretical study of the interactions between vibrations of large numbers of FDM 3D printers;Progress in Additive Manufacturing;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3