Recent Development in Big Data Analytics

Author:

Kumar M. Sandeep1,Prabhu J. 1

Affiliation:

1. Vellore Institute of Technology, India

Abstract

This chapter describes how big data consist of an extreme volume of data, velocity, and more complex variable data that demands current technology changes in capturing, storage, distribution, management, analysis data. Business facing more struggles in identifying the pragmatic approach in capturing the data about customer, products, and services. Usage of big data mainly with the analytical method, but it specifically compares with features of an analytical method based on unstructured data contributed around 95% of big data. The analytical approach depends on heterogeneous data and unstructured data's like text, audio, video format. It demands new effective tool for predictive analysis for big data with the unstructured format. This chapter describes explanation of big data and characteristics of big data compress of Volume, Velocity, Variety, Variability, and Value. Recent trends in the development of big data that applies in real time application perspectives like health care agriculture, education etc.

Publisher

IGI Global

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Map-Reduce based Distance Weighted k-Nearest Neighbor Machine Learning Algorithm for Big Data Applications;Scalable Computing: Practice and Experience;2022-12-22

2. Predicting human behavior from social media using mRMR with COA;International Journal of System Assurance Engineering and Management;2022-10-22

3. Personality prediction model for social media using machine learning Technique;Computers and Electrical Engineering;2022-05

4. Diagnosis of Retinal Diseases Based on Bayesian Optimization Deep Learning Network Using Optical Coherence Tomography Images;Computational Intelligence and Neuroscience;2022-04-15

5. AgroInfo DSF: A Smart Decision Support Framework for Precision Agriculture and Farming;Proceedings of the Sixteenth International Conference on Management Science and Engineering Management – Volume 1;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3