Quantum Local Binary Pattern for Medical Edge Detection

Author:

Lekehali Somia1,Moussaoui Abdelouahab2

Affiliation:

1. University of M'sila, M'Sila, Algeria

2. University of Ferhat Abbas Setif 1, El Bez, Algeria

Abstract

Edge detection is one of the most important operations for extracting the different objects in medical images because it enables delimitation of the various structures present in the image. Most edge detection algorithms are based on the intensity variations in images. Edge detection is especially difficult when the images are textured, and it is essential to consider the texture in edge detection processes. In this article, the authors propose a new procedure to extract the texture from images, called the Quantum Local Binary Pattern (QuLBP). The authors introduce two applications that use QuLBP to detect edges in magnetic resonance images: a cellular automaton (CA) edge detector algorithm and a combination of the QuLBP and the Deriche-Canny algorithm for salt and pepper noise resistance. The proposed approach to extracting texture is designed for and applied to different gray scale image datasets with real and synthetic magnetic resonance imaging (MRI). The experiments demonstrate that the proposed approach produces good results in both applications, compared to classical algorithms.

Publisher

IGI Global

Reference25 articles.

1. Brainweb: Simulated Brain Database. (1996). Retrieved from http://brainweb.bic.mni.mcgill.ca/brainweb/

2. A Computational Approach to Edge Detection

3. Using Canny's criteria to derive a recursively implemented optimal edge detector

4. Parallel Image Processing by Memory-Augmented Cellular Automata

5. Prostate segmentation with local binary patterns guided active appearance models.;S.Ghose;Medical Imaging: Image Processing,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3