An Efficient Handwritten Character Recognition Using Quantum Multilayer Neural Network (QMLNN) Architecture

Author:

Konar Debanjan1,Kar Suman Kalyan1

Affiliation:

1. Sikkim Manipal Institute of Technology, India

Abstract

This chapter proposes a quantum multi-layer neural network (QMLNN) architecture suitable for handwritten character recognition in real time, assisted by quantum backpropagation of errors calculated from the quantum-inspired fuzziness measure of network output states. It is composed of three second-order neighborhood-topology-based inter-connected layers of neurons represented by qubits known as input, hidden, and output layers. The QMLNN architecture is a feed forward network with standard quantum backpropagation algorithm for the adjustment of its weighted interconnection. QMLNN self-organizes the quantum fuzzy input image information by means of the quantum backpropagating errors at the intermediate and output layers of the architecture. The interconnection weights are described using rotation gates. After the network is stabilized, a quantum observation at the output layer destroys the superposition of quantum states in order to obtain true binary outputs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3