Optimal Parameter Prediction for Secure Quantum Key Distribution Using Quantum Machine Learning Models

Author:

Sathish Babu B. 1,Bhargavi K.2,Subramanya K. N.1

Affiliation:

1. RV College of Engineering, Bangalore, India

2. Siddaganga Institute of Technology, India

Abstract

The advent of quantum computing is bringing threats to successful operations of classical cryptographic techniques. To conduct quantum key distribution (QKD) in a finite time interval, there is a need to estimate photon states and analyze the fluctuations statistically. The use of brute force and local search methods for parameter optimization are computationally intensive and becomes an infeasible solution even for smaller connections. Therefore, the use of quantum machine learning models with self-learning ability is useful in predicting the optimal parameters for quantum key distribution. This chapter discusses some of the quantum machine learning models with their architecture, advantages, and disadvantages. The performance of quantum convoluted neural network (QCNN) and Quantum Particle Swarm Optimization (QPSO) towards QKD is found to be good compared to all the other quantum machine learning models discussed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3