A Fusion-Based Approach to Generate and Classify Synthetic Cancer Cell Image Using DCGAN and CNN Architecture

Author:

Chatterjee Ahan1ORCID,Roy Swagatam1ORCID

Affiliation:

1. The Neotia University, India

Abstract

The most talked about disease of our era, cancer, has taken many lives, and most of them are due to late prognosis. Statistical data shows around 10 million people lose their lives per year due to cancer globally. With every passing year, the malignant cancer cells are evolving at a rapid pace. The cancer cells are mutating with time, and it's becoming much more dangerous than before. In the chapter, the authors propose a DCGAN-based neural net architecture that will generate synthetic blood cancer cell images from fed data. The images, which will be generated, don't exist but can be formed in the near future due to constant mutation of the virus. Afterwards, the synthetic image is passes through a CNN net architecture which will predict the output class of the synthetic image. The novelty in this chapter is that it will generate some cancer cell images that can be generated after mutation, and it will predict the class of the image, whether it's malignant or benign through the proposed CNN architecture.

Publisher

IGI Global

Reference20 articles.

1. Bouvrie, J. (2006). Notes on convolutional neural networks. Academic Press.

2. A Machine Learning Approach to Prevent Cancer;A.Chatterjee;Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning

3. Data augmentation using MG-GAN for improved cancer classification on gene expression data.;P.Chaudhari;Soft Computing,2019

4. Deep Learning Based Automatic Immune Cell Detection for Immunohistochemistry Images

5. GAN-based synthetic brain MR image generation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3