Effective Multi-Label Classification Using Data Preprocessing

Author:

Tidake Vaishali S.1ORCID,Sane Shirish S.2

Affiliation:

1. MVPS's KBT College of Engineering, Nashik, India

2. K. K. Wagh Institute of Engineering Education and Research, Nashik, India

Abstract

Usage of feature similarity is expected when the nearest neighbors are to be explored. Examples in multi-label datasets are associated with multiple labels. Hence, the use of label dissimilarity accompanied by feature similarity may reveal better neighbors. Information extracted from such neighbors is explored by devised MLFLD and MLFLD-MAXP algorithms. Among three distance metrics used for computation of label dissimilarity, Hamming distance has shown the most improved performance and hence used for further evaluation. The performance of implemented algorithms is compared with the state-of-the-art MLkNN algorithm. They showed an improvement for some datasets only. This chapter introduces parameters MLE and skew. MLE, skew, along with outlier parameter help to analyze multi-label and imbalanced nature of datasets. Investigation of datasets for various parameters and experimentation explored the need for data preprocessing for removing outliers. It revealed an improvement in the performance of implemented algorithms for all measures, and effectiveness is empirically validated.

Publisher

IGI Global

Reference37 articles.

1. Evaluation of distance measures for hierarchical multilabel classification in functional genomics.;D.Aleksovski;Proceedings of the 1st workshop on learning from multi-label data (MLD) held in conjunction with ECML/PKDD,2009

2. Charte, F., Rivera, A., del Jesus, M. J., & Herrera, F. (2013). A First Approach to Deal with Imbalance in Multi-label Datasets. HAIS 2013, LNAI 8073, 150–160.

3. Addressing Imbalance in Multi-Label Classification Using Structured Hellinger Forests;Z. A.Daniels;Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).,2017

4. A tutorial on multi-label classification techniques;A.de Carvalho;Studies in Computational Intelligence 205,2009

5. Collective multi-label classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3