Methods of Reception and Signal Processing in Machine Vision Systems

Author:

Strelkova Tatyana1,Strelkov Alexander I.1,Kartashov Vladimir M.1,Lytyuga Alexander P.1,Kalmykov Alexander S.1

Affiliation:

1. Kharkiv National University of Radio Electronics, Ukraine

Abstract

The chapter covers development of mathematical model of signals in optoelectronic systems. The mathematical model can be used as a base for detection algorithm development for optical signal from objects. Analytical expressions for mean values and signal and noise components dispersion are cited. These expressions can be used for estimating efficiency of the offered algorithm by the criterion of detection probabilistic characteristics and criterion of signal/noise relation value. The possibility of signal detection characteristics improvement with low signal-to-noise ratio is shown. The method is proposed for detection of moving objects and combines correlation and threshold methods, as well as optimization of the interframe processing of the sequence of analyzed frames. This method allows estimating the statistical characteristics of the signal and noise components and calculating the correlation integral when detecting moving low-contrast objects. The proposed algorithm for detecting moving objects in low illuminance conditions allows preventing the manifestation of the blur effect.

Publisher

IGI Global

Reference23 articles.

1. Bondarev, V. N., Trester, G., & Chernega, V. S. (1999). Digital signal processing: Methods and tools. Academic Press.

2. Cokes, D., & Lewis, P. (1969). Stochastic analysis of chains of events. Academic Press.

3. Signal-to-noise optimization of medical imaging systems

4. Fedoseev, V. I. (2011). Priem prostranstvenno-vremennyh signalov v optiko-jelektronnyh sistemah (puassonovskaja model’). Sp-b.: Universitetskaja kniga.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3