Cooperative Relaying Communication in IoT Applications for 5G Radio Networks

Author:

Kumar Rajeev1ORCID,Hossain Ashraf2

Affiliation:

1. Central University of Karnataka, India

2. National Institute of Technology, Silchar, India

Abstract

This chapter presents cooperative relaying networks that are helpful in Internet of Thing (IoT) applications for fifth-generation (5G) radio networks. It provides reliable connectivity as the wireless device is out of range from cellular network, high throughput gains and enhance the lifetime of wireless networks. These features can be achieved by designing the advanced protocols. The design of advanced protocols plays an important role to combat the effect of channel fading, data packet scheduling at the buffered relay, average delay, and traffic intensity. To achieve our goals, we consider two-way cooperative buffered relay networks and then investigate advanced protocols such as without channel state information (CSI) i.e., buffer state information (BSI) only and with partial transmit CSI i.e., BSI/CSI with the assistance of one dimensional Markov chain and transmission policies in fading environment. The outage probability of consecutive links and outage probability of multi-access and broadcast channels are provided in closed-form. Further, the buffered relay achieves maximum throughput gains in closed-form for all these protocols. The objective function of throughput of the buffered relay is evaluated in fractional programming that is transformed into linear program using standard CVX tool. Numerical results show that our proposed protocols performance better as compared to conventional method studied in the literature. Finally, this chapter provides possible future research directions.

Publisher

IGI Global

Reference38 articles.

1. Compress-and-forward strategy for the relay channel with non-causal state information.;B.Akhbari;Proc. IEEE Int. Symp. on Inf. Theory,2009

2. Selective decode-and-forward using fixed relays and packet accumulation.;H.Alves;IEEE Communications Letters,2011

3. A Noise Reduction Amplify-and-Forward Relay Protocol for Distributed Spatial Diversity

4. Buffer-aware network coding for wireless networks.;W.Chen;IEEE/ACM Transactions on Networking,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3