Predictive Modeling for Classification of Breast Cancer Dataset Using Feature Selection Techniques

Author:

S. Leena Nesamani1,Rajini S. Nirmala Sigirtha1

Affiliation:

1. Dr. M. G. R. Educational and Research Institute, India

Abstract

Predictive modeling or predict analysis is the process of trying to predict the outcome from data using machine learning models. The quality of the output predominantly depends on the quality of the data that is provided to the model. The process of selecting the best choice of input to a machine learning model depends on a variety of criteria and is referred to as feature engineering. The work is conducted to classify the breast cancer patients into either the recurrence or non-recurrence category. A categorical breast cancer dataset is used in this work from which the best set of features is selected to make accurate predictions. Two feature selection techniques, namely the chi-squared technique and the mutual information technique, have been used. The selected features were then used by the logistic regression model to make the final prediction. It was identified that the mutual information technique proved to be more efficient and produced higher accuracy in the predictions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3