Efficient Iterative Massive MIMO Detectors Based on Iterative Matrix Inversion Methods

Author:

Albreem Mahmoud1

Affiliation:

1. A'Sharqiyah University, Oman

Abstract

Massive multiple-input multiple-output (MIMO) is a key technology in fifth generation (5G) communication systems. Although the maximum likelihood (ML) obtains an optimal performance, it is prohibited in realization because of its high computational complexity. Linear detectors are an alternative solution, but they contain a matrix inversion which is not hardware friendly. Several methods have been proposed to approximate or to avoid the computation of exact matrix inversion. This chapter garners those methods and study their applicability in massive MIMO system so that a generalist in communication systems can differentiate between different algorithms from a wide range of solutions. This chapter presents the performance-complexity profile of a detector based on the Neuamnn-series (NS), Newton iteration (NI), successive over relaxation (SOR), Gauss-Seidel (GS), Jacobi (JA), Richardson (RI), optimized coordinate descent (OCD), and conjugate-gradient (CG) methods in 8×64, 16×64, and 32×64 MIMO sizes, and modulation scheme is 64QAM.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3