Privacy Information Leakage Prevention in Cognitive Social Mining Applications

Author:

Murugan Suriya1,Anandakumar H. 2

Affiliation:

1. Bannari Amman Institute of Technology, India

2. Sri Eshwar College of Engineering, India

Abstract

Online social networks, such as Facebook are increasingly used by many users and these networks allow people to publish and share their data to their friends. The problem is user privacy information can be inferred via social relations. This chapter makes a study and performs research on managing those confidential information leakages which is a challenging issue in social networks. It is possible to use learning methods on user released data to predict private information. Since the main goal is to distribute social network data while preventing sensitive data disclosure, it can be achieved through sanitization techniques. Then the effectiveness of those techniques is explored, and the methods of collective inference are used to discover sensitive attributes of the user profile data set. Hence, sanitization methods can be used efficiently to decrease the accuracy of both local and relational classifiers and allow secure information sharing by maintaining user privacy.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3