Implementation and Analysis of Different POS Tagger in Khasi Language

Author:

Hynniewta Risanlang1,Maji Arnab K.1,Warjri Sunita1

Affiliation:

1. North Eastern Hill University, India

Abstract

Part-of-speech tagging is a process of assigning each word of a sentence to a part of speech based on its context and definition. POS tagging is a prerequisite tool for many NLP tasks like word sense disambiguity, name entity information extraction, etc. Unfortunately, very little work has been done so far in this line for Khasi Language. The main difficulty lies with the unavailability of an annotated corpus. Hence, a small corpus is created which consists of 778 sentences with 34,873 words, out of which 3,942 are distinct words and a tagset of 52 tags. In this chapter, three methods for POS tagging, namely Brill's tagger, hidden Markov model (HMM)-based tagger, and bidirectional long short-term memory recurrent neural network (Bi-LSTM), have been implemented. Then a comparative analysis is performed, and it is observed that Bi-LSTM performs better in terms of accuracy.

Publisher

IGI Global

Reference22 articles.

1. AyanaA. G.UniversityH. (2015). Towards improving Brill’s tagger lexical and transformation rule for Afaan Oromo language. Hawassa University.

2. Rule based POS tagger for Marathi text.;P.Bagul;The Proceedings of International Journal of Computer Science and Information Technologies,2014

3. Barman, A. K., Sarmah, J., & Sarma, S. K. (2013, April). Pos tagging of Assamese language and performance analysis of CRF++ and FNTBL approaches. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation (pp. 476-479). IEEE.

4. BirdS.KleinE.LoperE. (2009). Natural language processing with Python: analyzing text with the natural language toolkit. O'Reilly Media, Inc.

5. Bogdan. (2018). Part of speech tagging using an lstm network. https://nlpforhackers.io/lstm-pos-tagger-keras/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Money Doesn’t Like Noise”;Linguistics Initiative;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3