Approaches for M-Health Environment

Author:

Abstract

It is a well-known fact that when a camera or other imaging system captures an image, often, the vision system for which it is captured cannot implement it directly. There may be several reasons behind this fact such as there can exist random intensity variation in the image. There can also be illumination variation in the image or poor contrast. These drawbacks must be tackled at the primitive stages for optimum vision processing. This chapter will discuss different filtering approaches for this purpose. The chapter begins with the Gaussian filter, followed by a brief review of different often used approaches. Moreover, this chapter will also render different filtering approaches including their hardware architectures.

Publisher

IGI Global

Reference42 articles.

1. Aggarwal & Kumar. (2016). Thinning of Binary Images Using Neural Network Based System. IJEIT, 5(10), 68-73.

2. Ashwini, Karane, & Navalgund. (2013). Implementation of a Thinning Algorithm using Verilog and MATLAB. NCWSE International Journal of Current Engineering and Technology, 333-337.

3. Bahisham & Yusoff. (2018). Improved Palm Dorsa Vein Image Enhancement and Feature Extraction – Hardware Design for Biometric System (PhD thesis). Universiti Putra Malaysia.

4. FPGA-based 3D median filtering using word-parallel systolic arrays

5. Architecture Design for Median Filter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3