Aspects of Extremely Low Frequency Electric and Magnetic Cleanliness on Space Platforms

Author:

Mavropoulou Alexandra P.1,Bechrakis Triantafyllos Alexandros D.1ORCID,Nikolopoulos Christos D.2ORCID

Affiliation:

1. National Technical University of Athens, Greece

2. Department of Electronic Engineering, School of Engineering, Hellenic Mediterranean University, Greece

Abstract

Nowadays, a wide range of space missions accommodate ever-stricter electromagnetic cleanliness requirements arising either from the need for more precise measurements or from the implementation of highly sensitive equipment. Therefore, the establishment of a methodology that ensures the minimization of the electric and/or magnetic field in specific areas inside or outside the spacecraft structure is crucial. Towards this goal, the current chapter proposes that utilizing the results of a process completed during the early design stages of a mission, that is, the measurement and characterization of each implemented device, the desired elimination of the field can be achieved. In particular, the emerged electromagnetic signatures of the units are proven essential for the proposed methodology, which, using a heuristic approach, defines the optimal ordinance of the equipment that leads to system-level electromagnetic field minimization in the volume of interest. The dimensions of the devices and the effect of the conductive surfaces of the spacecraft's hull are also taken into account.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3