Affiliation:
1. Department of Electronic Engineering, Hellenic Mediterranean University, Greece
2. Department of Information and Electronic Engineering, International Hellenic University, Greece
Abstract
The forward and the inverse problem of a thin, circular, loop antenna that radiates in free space is modeled and solved by using soft computing techniques such as artificial neural networks and adaptive neuro fuzzy inference systems. On the one hand, the loop radius and the observation angle serve as inputs to the forward model, whereas the radiation intensity is the output. On the other hand, the electric field intensity and the loop radius are the input and output, respectively, to the inverse model. Extensive numerical tests indicate that the results predicted by the proposed models are in excellent agreement with theoretical data obtained from the existing analytical solutions of the forward problem. Thus, the employment of artificial intelligence techniques for tackling electromagnetic problems turns out to be promising, especially regarding the inverse problems that lack solution with other methods.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. K-12 Agile Learning with Educational Software and Robotics Technology;2024 5th International Conference in Electronic Engineering, Information Technology & Education (EEITE);2024-05-29