Large-Scale Data Storage Scheme in Blockchain Ledger Using IPFS and NoSQL

Author:

Kumar Randhir1ORCID,Tripathi Rakesh1

Affiliation:

1. Department of Information Technology, National Institute of Technology, Raipur, India

Abstract

The future applications of blockchain are expected to serve millions of users. To provide variety of services to the users, using underlying technology has to consider large-scale storage and assessment behind the scene. Most of the current applications of blockchain are working either on simulators or via small blockchain network. However, the storage issue in the real world is unpredictable. To address the issue of large-scale data storage, the authors have introduced the data storage scheme in blockchain (DSSB). The storage model executes behind the blockchain ledger to store large-scale data. In DSSB, they have used hybrid storage model using IPFS and MongoDB(NoSQL) in order to provide efficient storage for large-scale data in blockchain. In this storage model, they have maintained the content-addressed hash of the transactions on blockchain network to ensure provenance. In DSSB, they are storing the original data (large-scale data) into MongoDB and IPFS. The DSSB model not only provides efficient storage of large-scale data but also provides storage size reduction of blockchain ledger.

Publisher

IGI Global

Reference44 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Double Security Hashing Algorithm for Storing Data in Blockchain Technology;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

2. Blockchain-based proof-of-authenticity frameworks for Explainable AI;Multimedia Tools and Applications;2023-10-02

3. Secure transfer of robust healthcare data using blockchain-based privacy;Cluster Computing;2023-05-09

4. A Novel ORLLTMLP-Based Attack Detection and Blockchain-Aware Security Framework Using LCTFA in Smart City Applications;New Generation Computing;2023-03-27

5. Blockchain Systems, Technologies, and Applications: A Methodology Perspective;IEEE Communications Surveys & Tutorials;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3