Malware Detection in Network Flows With Self-Supervised Deep Learning

Author:

Woolman Thomas Alan1,Lunsford Philip2

Affiliation:

1. On Target Technologies, Inc., USA

2. East Carolina University, USA

Abstract

This article explores the application of anomaly detection models from network flow data using multi-layer perceptron autoencoding neural networks, for the purpose of self-supervised detection of novel network intrusion events and malware classes over unrestrained internet connections. The authors utilized network flows rather than more detailed (and larger) packet capture logs in order to create a more cost-effective and potentially faster anomaly detection tool that could more easily scale enterprise class network traffic analysis. Unsupervised/self-supervised deep learning anomaly detection was used against this less-granular dataset to maximize the likelihood of detecting novel network activities within the less-detailed dataset without relying on pre-defined rules and training data. The authors conclude with a test of statistical significance against known threat classes (unknown to the anomaly detection model) that the proposed methodology results were statistically significant for detecting threat classes in unrestrained internet networks using network flow data.

Publisher

IGI Global

Reference20 articles.

1. Reducing Threats by Using Bayesian Networks to Prioritize and Combine Defense in Depth Security Measures

2. Chess, D. M., & White, S. R. (1987). An undetectable computer virus. IBM Thomas J. Watson Research Center.

3. Computer viruses

4. DeshwalD.SangwanP. (2021). A comprehensive study of deep neural networks for unsupervised deep learning. In Artificial intelligence for sustainable development: Theory, practice and future applications. Springer.

5. Trust and Verify: A Complexity-Based IoT Behavioral Enforcement Method

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3