A High Performance Model for Task Allocation in Distributed Computing System Using K-Means Clustering Technique

Author:

Kumar Harendra1,Chauhan Nutan Kumari1,Yadav Pradeep Kumar2

Affiliation:

1. Department of Mathematics and Statistics, Gurukula Kangri University, Haridwar, India

2. Department of Research Planning and Business Development, Central Building Research Institute, Roorkee, India

Abstract

Tasks allocation is an important step for obtaining high performance in distributed computing system (DCS). This article attempts to develop a mathematical model for allocating the tasks to the processors in order to achieve optimal cost and optimal reliability of the system. The proposed model has been divided into two stages. Stage-I, makes the ‘n' clusters of set of ‘m' tasks by using k-means clustering technique. To use the k-means clustering techniques, the inter-task communication costs have been modified in such a way that highly communicated tasks are clustered together to minimize the communication costs between tasks. Stage-II, allocates the ‘n' clusters of tasks onto ‘n' processors to minimize the system cost. To design the mathematical model, executions costs and inter tasks communication costs have been taken in the form of matrices. To test the performance of the proposed model, many examples are considered from different research papers and results of examples have compared with some existing models.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Scheduling and Authentication for Legacy Uniprocessor and Multicore System;2022 International Conference on Computer Communication and Informatics (ICCCI);2022-01-25

2. Hierarchical Task Assignment Strategy for Heterogeneous Multi-UAV System in Large-Scale Search and Rescue Scenarios;International Journal of Aerospace Engineering;2021-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3