Resource Provisioning and Scheduling of Big Data Processing Jobs

Author:

Aron Rajni1,Aggarwal Deepak Kumar2

Affiliation:

1. Sahyadri College of Engineering and Management, India

2. Concordia University, Canada

Abstract

Cloud Computing has become a buzzword in the IT industry. Cloud Computing which provides inexpensive computing resources on the pay-as-you-go basis is promptly gaining momentum as a substitute for traditional Information Technology (IT) based organizations. Therefore, the increased utilization of Clouds makes an execution of Big Data processing jobs a vital research area. As more and more users have started to store/process their real-time data in Cloud environments, Resource Provisioning and Scheduling of Big Data processing jobs becomes a key element of consideration for efficient execution of Big Data applications. This chapter discusses the fundamental concepts supporting Cloud Computing & Big Data terms and the relationship between them. This chapter will help researchers find the important characteristics of Cloud Resource Management Systems to handle Big Data processing jobs and will also help to select the most suitable technique for processing Big Data jobs in Cloud Computing environment.

Publisher

IGI Global

Reference37 articles.

1. A., Rosni Abdullah, R., & Abdul, N. (2009). “Job type approach for deciding job scheduling in grid computing systems;Journal of Computational Science,2009

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., & Lee, G. … Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 4(53), 50-58. Retrieved from http://dl.acm.org/citation.cfm?id=1721672

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., & Konwinski, A., … Zaharia, M. (2009). Above the clouds: A Berkeley view of cloud computing (Technical Report No. UCB/EECS-2009-28). University of California, EECS Dept., Berkeley. Retrieved November 9, 2016 from https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

4. A performance-oriented adaptive scheduler for dependent tasks on grids

5. HCOC: a cost optimization algorithm for workflow scheduling in hybrid clouds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3