A Hierarchical Hadoop Framework to Handle Big Data in Geo-Distributed Computing Environments

Author:

Tomarchio Orazio1,Di Modica Giuseppe1,Cavallo Marco1,Polito Carmelo2

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy

2. University of Catania, Catania, Italy

Abstract

Advances in the communication technologies, along with the birth of new communication paradigms leveraging on the power of the social, has fostered the production of huge amounts of data. Old-fashioned computing paradigms are unfit to handle the dimensions of the data daily produced by the countless, worldwide distributed sources of information. So far, the MapReduce has been able to keep the promise of speeding up the computation over Big Data within a cluster. This article focuses on scenarios of worldwide distributed Big Data. While stigmatizing the poor performance of the Hadoop framework when deployed in such scenarios, it proposes the definition of a Hierarchical Hadoop Framework (H2F) to cope with the issues arising when Big Data are scattered over geographically distant data centers. The article highlights the novelty introduced by the H2F with respect to other hierarchical approaches. Tests run on a software prototype are also reported to show the increase of performance that H2F is able to achieve in geographical scenarios over a plain Hadoop approach.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3