Machine Automation Making Cyber-Policy Violator More Resilient

Author:

Panigrahi Gyana Ranjana1ORCID,Barpanda Nalini Kanta1,Panda Madhumita2

Affiliation:

1. Sambalpur University, India

2. Gangadhar Meher University, India

Abstract

Cybersecurity is of global importance. Nearly all association suffer from an active cyber-attack. However, there is a lack of making cyber policy violator more resilient for analysts in proportionately analyzing security incidents. Now the question: Is there any proper technique of implementations for assisting automated decision to the analyst using a comparison study feature selection method? The authors take multi-criteria decision-making methods for comparison. Here the authors use CICDDoS2019 datasets consisting of Windows benign and the most vanguard for shared bouts. Hill-climbing algorithm may be incorporated to select best features. The time-based pragmatic data can be extracted from the mainsheet for classification as distributed cyber-policy violator or legitimate benign using decision tree (DT) with analytical hierarchy process (AHP) (DT-AHP), support vector machine (SVM) with technique for order of preference by similarity to ideal solution (SVM-TOPSIS) and mixed model of k-nearest neighbor (KNN AHP-TOPSIS) algorithms.

Publisher

IGI Global

Reference29 articles.

1. Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms

2. Akinsola, J. E. T., Kuyoro, S. O., Awodele, O., & Kasali, F. A. (2019). Performance Evaluation of Supervised Machine Learning Algorithms Using Multi-Criteria Decision Making Techniques. In International Conference on Information Technology in Education and Development (ITED) Proceedings (pp. 17-34). Academic Press.

3. A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran

4. Filter-based Attribute Selection Approach for Intrusion Detection using k-Means Clustering and Sequential Minimal Optimization Techniq

5. dos Santos, F. D. M. R., de Oliveira Almeida, F. G., Martins, A. C. P. R., Reis, A. C. B., & Holanda, M. (2018, September). Ranking Machine Learning Classifiers Using Multicriteria Approach. In 2018 11th International Conference on the Quality of Information and Communications Technology (QUATIC) (pp. 168-174). IEEE.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Machine Automated Big Data Modular Framework for Finding Network Security Vulnerabilities;2021 19th OITS International Conference on Information Technology (OCIT);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3