Useful Features for Computer-Aided Diagnosis Systems for Melanoma Detection Using Dermoscopic Images

Author:

Vocaturo Eugenio1ORCID,Zumpano Ester2

Affiliation:

1. DIMES, University of Calabria (UNICAL), Italy & CNR-NANOTEC National Research Council, Italy

2. DIMES, University of Calabria (UNICAL), Italy

Abstract

The development of performing imaging techniques is favoring the spread of artificial vision systems as support tools for the early diagnosis of skin cancers. Epiluminescence microscopy (ELM) is currently the most adopted technique through which it is possible to obtain very detailed images of skin lesions. Over time, melanoma spreads quickly, invading the body's organs through the blood vessels: an early recognition is essential to ensure decisive intervention. There are many machine learning approaches proposed to implement artificial vision systems operating on datasets made up of dermatoscopic images obtained using ELM technique. These proposals are characterized by the use of various specific features that make understanding difficult: the problem of defining a set of features that can allows good classification performance arises. The aim of this work is to identify reference features that can be used by new researchers as a starting point for new proposals.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3