Non-Destructive Testing of Carbon Fibre Reinforced Polymer (CFRP) Composite Using Thermosonic Technique

Author:

Bose Tanmoy1,Hanuman N. S. V. N.1,Roy Subhankar1

Affiliation:

1. National Institute of Technology, Meghalaya, India

Abstract

Composite materials are often subjected to low velocity impacts which leads to delamination in subsequent layers. Linear ultrasound-based approaches are not accurate enough to detect it properly. The local defect resonance (LDR) based thermosonic is proved to be an efficient candidate for detection of such defects. LDR frequency excitation leads to high amplitude vibration which raises defect temperature drastically, detectable by an infrared camera. In this chapter, a numerical investigation of LDR frequency excited ultrasound thermography is carried out on delaminated carbon fibre reinforced polymer (CFRP) plate. The location and size of the delamination can be easily understood from thermal signature. The temperature gradient variation is found to be high at first and then it decreases due to higher heat conduction rate. The delamination in CFRP plate is detected by standard phased array ultrasound testing (PAUT) using flat bottom hole in aluminium plate as a case study. Delamination detection by PAUT is found to be very time consuming process compared with thermosonic technique.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3