Performance Evaluation of Cloud Systems by Switching the Virtual Machines Power Mode Between the Sleep Mode and Active Mode

Author:

Patra Sudhansu Shekhar1ORCID,Goswami Veena2ORCID,Mund G. B.2ORCID

Affiliation:

1. Kalinga Institute of Industrial Technology, India

2. Kalinga Institue of Industrial Technology, India

Abstract

Data centers are cost-effective infrastructures for storing large volumes of data and hosting large scale service applications. Cloud computing service providers are rapidly deploying data centers across the world with a huge number of servers and switches. These data centers consume significant amounts of energy, contributing to high operational costs. In this chapter, we study energy savings of data centers by consolidation and switching off of those virtual machines which are not in use. According to this policy, c virtual machines continue serving the customer until the number of idle servers attains the threshold level d; then d idle servers take synchronous vacation simultaneously, otherwise these servers begin serving the customers. Numerical results are provided to demonstrate the applicability of the proposed model for the data center management in particular, to quantify theoretically the tradeoff between the conflicting aims of energy efficiency and Quality of Service (QoS) requirements specified by cloud tenants.

Publisher

IGI Global

Reference63 articles.

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., & Zaharia, M. (2009). Above the clouds: a Berkeley view of cloud computing. UC Berkley. Retrieved from http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

2. GreeDi: An energy efficient routing algorithm for big data on cloud

3. Trusted Energy-Efficient Cloud-Based Services Brokerage Platform

4. An energy-aware service composition algorithm for multiple cloud-based IoT applications

5. Energy Efficient Cloud Computing Environment via Autonomic Meta-director Framework

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3