Modeling a Predictive Control of Human Locomotion Based on the Dynamic Behavior

Author:

Rosario Joao Mauricio1,Flavio de Melo Leonimer2,Dumur Didier3,Makarov Maria3,Zamaia Jessica Fernanda Pereira2,Campos Gabriel Fillipe Centini2

Affiliation:

1. State University of Campinas, Brazil

2. State University of Londrina, Brazil

3. CentraleSupélec, France

Abstract

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3