Optimized Hybrid Prediction Method for Lung Metastases

Author:

Saeed Soobia1,Abdullah Afnizanfaizal2,Jhanjhi Noor Zaman3ORCID,Naqvi Mehmood4,Ahmad Muneer5

Affiliation:

1. Department of Software Engineering, UniversitiTeknologi Malaysia, Malaysia

2. UniversitiTeknologi Malaysia, Malaysia

3. Taylor's University, Malaysia

4. Mohwak College, Canada

5. National University of Science and Technology, Pakistan

Abstract

Brain metastases are the most prevalent intracranial neoplasm that causes excessive morbidity and mortality in most cancer patients. The current medical model for brain metastases is focused on the physical condition of the affected individual, the anatomy of the main tumor, and the number and proximity of brain lesions. In this paper, a new hybrid Metastases Fast Fourier Transformation with SVM (MFFT-SVM) method is proposed that can classify high dimensional magnetic resonance imaging as tumor and predicts lung cancer from given protein primary sequences. The goal is to address the associated issues stated with the treatment targeted at unique molecular pathways to the tumor, together with those involved in crossing the blood-brain barrier and migrating cells to the lungs. The proposed method identifies the place of the lung damage by the Fast Fourier Technique (FFT). FFT is the principal statistical approach for frequency analysis which has many engineering and scientific uses. Moreover, Differential Fourier Transformation (DFT) is considered for focusing the brain metastases that migrate into the lungs and create non-small lungs cancer. However, Support Vector Machine (SVM) is used to measure the accuracy of control patient's datasets of sensitivity and specificity. The simulation results verified the performance of the proposed method is improved by 92.8% sensitivity, of 93.2% specificity and 95.5% accuracy respectively.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3